

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Geotechnical Engineering Course & Branch: B.Tech - CE

Year & Sem: III-B.Tech & I-Sem Regulation: R18

1	a Define (i) Porosity (ii) Degree of Saturation (iii)Relative Density	[L1][CO1]	[2M]
	b State Darcy's law.	[L1][CO2]	[2M]
	c Define (i) Discharge velocity (ii) Seepage velocity.	[L1][CO2]	[2M]
	d Define the terms: (i) Effective stress (ii) Neutral stress (iii) Total stress.	[L1][CO2]	[2M]
	e What is the critical gradient of a sand deposit of specific gravity 2.65 and void ratio	[L1][CO2]	[2M]
	0.5?		
2	Explain the process of soil formation by weathering in details.	[L2][CO1]	[10M]
3	a) Classify various types of soil structures with neat sketch.	[L2][CO1]	[5 M]
	b) Explain Clay mineralogy.	[L2][CO1]	[5 M]
4	a) Using three phase diagram of soil, develop an expression for Void ratio, water	[L2][CO1]	[5 M]
	content, specific gravity and degree of saturation.		
	b) The moist unit weight of soil sample is 19.2 kN/m ³ and has water content of	[L3][CO1]	[5 M]
	9.8%. The specific gravity of soil particles is 2.69. Determine dry unit weight, void		
	ratio and porosity and degree of saturation.		
5	a) What are consistency limits explain with graph.	[L1][CO1]	[5M]
	b) Explain in detail the laboratory method of liquid limit.	[L2][CO1]	[5M]
6	a) Write short notes on Index Properties of soils.	[L1][CO1]	[4M]
	b) Explain in detail the laboratory method of dry sieve analysis of coarse grained soils?	[L2][CO1]	[6 M]
7	Explain in detail the Indian Standard classification System and list out group symbols	[L2][CO1]	[10 M]
	in detail?		
8	Define permeability? Explain various factors affecting permeability?	[L2][CO2]	[10M]
9	Determine the average coefficient of permeability in the horizontal and vertical	[L3][CO2]	[10M]
	direction for a deposit consisting of three layers of thickness 5m, 1m, and 2.5m and		
	having the coefficient of permeability of 3 x10 ⁻² mm/sec, 3x10 ⁻⁵ mm/sec and 4 x10 ⁻²		
10	² mm/sec respectively.	[I 2][CO2]	[10] [7]
10	Explain the coefficient of permeability in laboratory by constant head method with	[L2][CO2]	[10 M]
11	neat sketch.	[1.01[CO2]	r en (1)
11	a) Explain Quick sand condition? b) Define flow not and various applications of flow not	[L2][CO2]	[5M]
	b) Define flow net and various applications of flow net.	[L2][CO2]	[5M]

UNIT –II COMPACTION AND CONSOLIDATION

1	a Write short notes on zero air void line.	[L1][CO3]	[2M]
	b Define relative compaction.	[L1][CO3]	[2M]
	c Coefficient of compressibility.	[L1][CO3]	[2M]
	d Coefficient of volume change	[L1][CO3]	[2M]
	e Compression index, Expansion index & Recompression index	[L1][CO3]	[2M]
2	Describe the Standard Proctor test and modified Proctor test to be conducted in the	[L2][CO3]	[10M]
	laboratory.		
3	Define compaction and explain various factors effecting the compaction?	[L2][CO3]	[10M]
4	Write short notes on		
	(i) Compaction phenomenon	[L1][CO3]	[5 M]
	(ii) Method of compaction	[L1][CO3]	[5 M]
5	a) The Maximum dry density of a sample by the light compaction test is 1.78g/ml at	[L3][CO3]	[5M]
	an optimum water content of 15%. Find the air voids and degree of saturation		
	G=2.67.What would be the corresponding value of dry density on the zero air voids		
	at optimum moisture content.		
	b) An earth embankment is compacted at a water content 18%.to a bulk density of	[L3][CO3]	[5M]
	19.2 kN/m ³ . If the specific gravity of the sand is 2.7 find the void ratio and the degree	[
	of saturation of compacted embankment.		
6	Explain the procedure of Sand replacement method with neat sketch.	[L2][CO3]	[10M]
7	Explain the procedure of Core Cutter method with neat sketch.	[L2][CO3]	[10M]
8	Define consolidation and various types of consolidations.	[L2][CO3]	[10M]
9	(a) Define preconsolidation pressure.	[L2][CO3]	[5M]
	(b) Draw the graph representing preconsolidation pressure.	[L2][CO3]	[5M]
10	Explain the procedure of consolidation test with neat sketch	[L2][CO3]	[10M]
11	In a consolidation test the following results have been obtained. When the load was	[L3][CO3]	[10M]
	changed from 50 kN/m ² to 100 kN/m ² , the void ratio changed from 0.70 to 0.65.		
	Determine compression index, coefficient of volume change and coefficient of		
	consolidation in mm ² /sec.		

UNIT –III STRESS DISTRIBUTION IN SOILS AND SHEAR STRENGTH OF SOILS

1	a Write short notes on stress distribution in soil.	[L1][CO4]	[2M]
	b Define equation for vertical stress under a corner of rectangular area.	[L1][CO4]	[2M]
	c List out various assumptions of Boussinesq's equation.	[L1][CO4]	[2M]
	d What are the constituents on which shear strength of soil depends upon?	[L1][CO4]	[2M]
	e List out any two advantages and disadvantages of vane shear test?	[L1][CO4]	[2M]
2	Develop an expression for the vertical stress at a point due to a point load, using	[L2][CO4]	[10M]
	Boussinesq's theory		
3	Explain Newmaark's influence chart with neat sketch.	[L2][CO4]	[10M]
4	a) A concentrated load of 2000 kN acts vertically at the ground surface. Determine	[L3][CO4]	[5M]
	the vertical stress at a point P which is 6m directly below the load. Also calculate		
	the vertical stress at a point R which is at a depth of 6m but at a horizontal distance		
	of 5m from the axis of the load.	[L3][CO4]	[FN/]
	b) Determine the vertical stress at a point P which is 3m below and at a radial distance	[][]	[5M]
	of 3m from the vertical load 100kN. Use westergaard's solution.		
5	Explain vertical stress under line load, strip load, circular load and rectangular area	[L1][CO4]	[10M]
6	(a) Explain the concept of 'Westergaards theory' in soils.	[L2][CO4]	[5M]
	(b) What do you understand by 'Pressure bulb'? Illustrate with sketches.	[L2][CO4]	[5M]
7	Write brief critical notes on:		
	(a) Mohr's Circle of stress.	[L1][CO4]	[5M]
	(b) Explain the Mohr-Coulomb strength theory.	[L2][CO4]	[5M]
8	a) Explain types of soils based on total strength.	[L2][CO4]	[5M]
	b) Explain types of shear strength based on drainage conditions.	[L2][CO4]	[5M]
9	Explain the principle of the direct shear test. What are the advantages of this test? What	[L2][CO4]	[10M]
	are its Limitations?		
10	Describe the vane shear test with neat a sketch.	[L2][CO4]	[10M]
11	Explain the procedure of Triaxial Test with neat sketch.	[L2][CO4]	[10M]

UNIT –IV EARTH SLOPE STABILITY

1	a Write short notes on earth slope stability.	[L1][CO5]	[2M]
	b Explain compound failure with neat sketch.	[L1][CO5]	[2M]
	c Mention various uses of Taylor's stability number	[L1][CO5]	[2M]
	d What are the forces considered in Bishop's simplified method	[L1][CO5]	[2M]
	e List out various types of slope failures.	[L1][CO5]	[2M]
2	(a) Define earth slope?	[L1][CO5]	[5M]
	(b) Explain factor of safety with respect to shear strength, cohesion and friction?	[L2][CO5]	[5M]
3	(a) What are the factors causes the slope failures?	[L1][CO5]	[5M]
	(b) Explain different types of slope failures with neat sketches	[L1][CO5]	[5M]
4	Derive the expression for stability analysis of infinite slope of cohesive soils.	[L2][CO5]	[10M]
5	Derive the expression for stability analysis of infinite slope of cohesionless soils.	[L2][CO5]	[10M]
6	(a) Explain Taylor's stability number?	[L2][CO5]	[5M]
	(b) A vertical cut is made is made in a clay deposit (c=30 kN/m ² , Φ = 0°, γ =16 kN/m ²).	[L3][CO5]	[5 M]
	Find the maximum height which can be temporarily supported. Take S _n =0.261		
7	With the help of a neat sketch explain in detail about friction circle method?	[L2][CO5]	[10M]
8	A canal is to be excavated through a soil with $c = 15 \text{ kN/m}^2$, $\Phi = 20^\circ$, $e = 0.9$ and G	[L3][CO5]	[10M]
	= 2.67. The side slope is 1 in 1. The depth of the canal is 6 m. determine the factor of		
	safety with respect to cohesion when the canal runs full. What will be the factor of		
	safety if the canal is rapidly emptied?		
9	Analyze the slope, if it is made of clay having $c' = 30 \text{ kN/m}^2$, $\Phi' = 20^\circ$, $e = 0.65$ and	[L3][CO5]	[10M]
	G = 2.67 and under the following conditions: (i) When the soil is dry (ii) When water		
	seeps parallel to the surface of the slope (iii) When the slope is submerged slope angle		
	$=25^{\circ}$		
10	Give the step by step procedure of analyzing stability of a finite slope using Swedish	[L2[CO5]	[10M]
	circle method.	[22[000]	[=01.=]
11	With the help of a neat sketch show various forces considered for the analysis of a	[L2][CO5]	[10M]
	finite slope using Bishop's simplified method. Mention the equation for factor of		
	safety given by this method.		
L			

UNIT –V SOIL EXPLORATION

1	a Write short notes on Soil exploration.	[L1][CO6]	[2M]
	b Write short notes on core drilling.	[L1][CO6]	[2M]
	c List out various types of soil samplers.	[L1][CO6]	[2M]
	d What are hand carved samplers.	[L1][CO6]	[2M]
	e List out various types of borings for soil exploration.	[L1][CO6]	[2M]
2	(a) What are the different stages in sub soil exploration?	[L1][CO6]	[5 M]
	(b) Explain various uses of site investigations.	[L2][CO6]	[5 M]
3	Describe with a neat sketch how will you carry out the wash boring method of soil	[L2][CO6]	[10M]
	exploration.		
4	(a)Discuss various open excavation methods for conducting soil exploration.	[L2][CO6]	[5 M]
	(b)Sketch scraper bucket sample and explain how an undisturbed soil sample is	[L2][CO6]	[5M]
	extracted using it.		
5	(a) How boring operations are carried out using rotary auger boring and percussion	[L2][CO6]	[5M]
	drilling?		
	(b) Describe the construct of a split spoon sampler. Explain how undisturbed soil	[L2][CO6]	[5 M]
	sample is extracted using it.		
6	(a) Explain various types of soil samples.	[L2][CO6]	[5M]
	(b) List out various design features affecting the sample disturbance.	[L1][CO6]	[5 M]
7	Give a detailed account on how Standard Penetration Test is conducted. What are	[L2][CO6]	[10M]
	the relevant corrections applied to SPT number?		
8	Explain in detail how Cone Penetration Test is conducted with neat sketch.	[L2][CO6]	[10M]
9	a) A SPT was conducted in fine sand below the water table and a value of 25 is	[L1][CO6]	[5M]
	obtained for N. What is the corrected value of N?		
	b) A SPT was conducted in a dense sand deposit at a depth of 22m and a value of 48	[L1][CO6]	[5 M]
	was observed for N. The density of the sand was 15 kN/m ² . What is the value of N		
	corrected for over burden pressure?		
10	1	[[0][000]	r=N#1
10	(a) Describe in detail execution of soil exploration program.	[L2][CO6]	[5M]
11	(b) Explain various salient features of a soil exploration report	[L2][CO6]	[5M]
11	Explain in detail how plate load Test is conducted with neat sketch.	[L2][CO6]	[10M]

Prepared by: Mrs. K.ASHALATHA Asst Professor/CE